紧固件在确保机械的各个部位方面起着至关重要的作用。紧固件表面的凹痕,裂缝和划痕等变形是由材料特性和生产过程中设备的错误处理引起的。结果,需要质量控制以确保安全可靠的操作。现有的缺陷检查方法依赖于手动检查,该检查消耗了大量时间,金钱和其他资源;同样,由于人为错误,无法保证准确性。自动缺陷检测系统已证明对缺陷分析的手动检查技术有影响。但是,诸如卷积神经网络(CNN)和基于深度学习的方法之类的计算技术是进化方法。通过仔细选择设计参数值,可以实现CNN的全部电势。使用基于Taguchi的实验和分析设计,已经尝试在本研究中开发强大的自动系统。用于训练系统的数据集是为具有两个标记类别的M14尺寸螺母手动创建的:有缺陷且无缺陷。数据集中共有264张图像。所提出的顺序CNN的验证精度为96.3%,在0.001学习率下的验证损失为0.277。
translated by 谷歌翻译
When answering natural language questions over knowledge bases (KBs), incompleteness in the KB can naturally lead to many questions being unanswerable. While answerability has been explored in other QA settings, it has not been studied for QA over knowledge bases (KBQA). We first identify various forms of KB incompleteness that can result in a question being unanswerable. We then propose GrailQAbility, a new benchmark dataset, which systematically modifies GrailQA (a popular KBQA dataset) to represent all these incompleteness issues. Testing two state-of-the-art KBQA models (trained on original GrailQA as well as our GrailQAbility), we find that both models struggle to detect unanswerable questions, or sometimes detect them for the wrong reasons. Consequently, both models suffer significant loss in performance, underscoring the need for further research in making KBQA systems robust to unanswerability.
translated by 谷歌翻译
We demonstrate a Physics-informed Neural Network (PINN) based model for real-time health monitoring of a heat exchanger, that plays a critical role in improving energy efficiency of thermal power plants. A hypernetwork based approach is used to enable the domain-decomposed PINN learn the thermal behavior of the heat exchanger in response to dynamic boundary conditions, eliminating the need to re-train. As a result, we achieve orders of magnitude reduction in inference time in comparison to existing PINNs, while maintaining the accuracy on par with the physics-based simulations. This makes the approach very attractive for predictive maintenance of the heat exchanger in digital twin environments.
translated by 谷歌翻译
Deep neural networks (DNN) are prone to miscalibrated predictions, often exhibiting a mismatch between the predicted output and the associated confidence scores. Contemporary model calibration techniques mitigate the problem of overconfident predictions by pushing down the confidence of the winning class while increasing the confidence of the remaining classes across all test samples. However, from a deployment perspective, an ideal model is desired to (i) generate well-calibrated predictions for high-confidence samples with predicted probability say >0.95, and (ii) generate a higher proportion of legitimate high-confidence samples. To this end, we propose a novel regularization technique that can be used with classification losses, leading to state-of-the-art calibrated predictions at test time; From a deployment standpoint in safety-critical applications, only high-confidence samples from a well-calibrated model are of interest, as the remaining samples have to undergo manual inspection. Predictive confidence reduction of these potentially ``high-confidence samples'' is a downside of existing calibration approaches. We mitigate this by proposing a dynamic train-time data pruning strategy that prunes low-confidence samples every few epochs, providing an increase in "confident yet calibrated samples". We demonstrate state-of-the-art calibration performance across image classification benchmarks, reducing training time without much compromise in accuracy. We provide insights into why our dynamic pruning strategy that prunes low-confidence training samples leads to an increase in high-confidence samples at test time.
translated by 谷歌翻译
We are interested in neurosymbolic systems consisting of a high-level symbolic layer for explainable prediction in terms of human-intelligible concepts; and a low-level neural layer for extracting symbols required to generate the symbolic explanation. Real data is often imperfect meaning that even if the symbolic theory remains unchanged, we may still need to address the problem of mapping raw data to high-level symbols, each time there is a change in the data acquisition environment or equipment. Manual (re-)annotation of the raw data each time this happens is laborious and expensive; and automated labelling methods are often imperfect, especially for complex problems. NEUROLOG proposed the use of a semantic loss function that allows an existing feature-based symbolic model to guide the extraction of feature-values from raw data, using `abduction'. However, the experiments demonstrating the use of semantic loss through abduction appear to rely heavily on a domain-specific pre-processing step that enables a prior delineation of feature locations in the raw data. We examine the use of semantic loss in domains where such pre-processing is not possible, or is not obvious. We show that without any prior information about the features, the NEUROLOG approach can continue to predict accurately even with substantially incorrect feature predictions. We show also that prior information about the features in the form of even imperfect pre-training can help correct this situation. These findings are replicated on the original problem considered by NEUROLOG, without the use of feature-delineation. This suggests that symbolic explanations constructed for data in a domain could be re-used in a related domain, by `feature-adaptation' of pre-trained neural extractors using the semantic loss function constrained by abductive feedback.
translated by 谷歌翻译
State-of-the-art summarization models still struggle to be factually consistent with the input text. A model-agnostic way to address this problem is post-editing the generated summaries. However, existing approaches typically fail to remove entity errors if a suitable input entity replacement is not available or may insert erroneous content. In our work, we focus on removing extrinsic entity errors, or entities not in the source, to improve consistency while retaining the summary's essential information and form. We propose to use sentence-compression data to train the post-editing model to take a summary with extrinsic entity errors marked with special tokens and output a compressed, well-formed summary with those errors removed. We show that this model improves factual consistency while maintaining ROUGE, improving entity precision by up to 30% on XSum, and that this model can be applied on top of another post-editor, improving entity precision by up to a total of 38%. We perform an extensive comparison of post-editing approaches that demonstrate trade-offs between factual consistency, informativeness, and grammaticality, and we analyze settings where post-editors show the largest improvements.
translated by 谷歌翻译
类比推理问题挑战了连接主义者和符号AI系统,因为这些系统需要将背景知识,推理和模式识别的结合。符号系统摄入显式域知识并执行演绎推理,但它们对噪声敏感,并且需要输入以预设符号特征。另一方面,Connectionist系统可以直接摄入丰富的输入空间,例如图像,文本或语音,即使使用嘈杂的输入也可以识别模式。但是,Connectionist模型努力将明确的领域知识用于演绎推理。在本文中,我们提出了一个框架,将神经网络的模式识别能力与象征性推理和背景知识结合在一起,以解决一类类似推理问题,其中一组属性和可能的​​关系是已知的。我们从“神经算法推理”方法[DeepMind 2020]中汲取灵感,并通过(i)基于问题的象征模型学习分布式表示(ii)培训神经网络转化反映了关系的分布式表示形式。参与问题,最后(iii)培训神经网络编码器,从图像到(i)中的分布式表示。这三个要素使我们能够使用神经网络作为操纵分布式表示的基本功能执行基于搜索的推理。我们在乌鸦渐进式矩阵中的视觉类比问题上进行了测试,并在人类绩效中实现准确性竞争,在某些情况下,优于初始端到端神经网络方法的方法。尽管最近接受大规模训练的神经模型产生了SOTA,但我们的新型神经符号推理方法是该问题的有希望的方向,可以说是更笼统的,尤其是对于可用的域知识的问题。
translated by 谷歌翻译
物理知情的神经网络(PINN)已获得极大的流行,作为用于求解PDE的替代方法。尽管取得了经验的成功,但我们仍在对培训对梯度下降的这种约束的融合特性建立了解。众所周知,在没有明确的归纳偏见的情况下,神经网络可能会以样本有效的方式学习或近似简单且知名的功能。因此,从少数搭配点诱导的数值近似可能无法概括整个域。同时,符号形式可以表现出良好的概括,并具有可解释性为有用的副产品。但是,符号近似可能会同时简洁明了。因此,在这项工作中,我们探索了一种神经肌符号方法,以近似PDE的溶液。我们观察到我们的方法在几个简单的情况下起作用。我们说明了我们方法对Navier Stokes的功效:Kovasznay流动,其中有多个物理量的兴趣,该物理数量由非线性耦合PDE系统控制。域分裂现在已成为帮助PINNS近似复杂功能的流行技巧。我们观察到神经肌符号方法也可以帮助这种复杂的功能。我们在暂时变化的二维汉堡方程上展示了域分裂的辅助神经符号方法。最后,我们考虑了必须解决参数化PDE的PINN的情况,以改变初始条件和PDE系数的变化。超级核武器已证明有望克服这些挑战。我们表明,可以设计超启动的网络,以结合速度的好处和提高准确性。我们观察到,神经词近似值始终是1-2个数量级,而不是神经或符号近似值。
translated by 谷歌翻译
癌症是人体内部异常细胞的无法控制的细胞分裂,可以蔓延到其他身体器官。它是非传染性疾病(NCDS)和NCDS之一,占全世界总死亡人数的71%,而肺癌是女性乳腺癌后第二次诊断的癌症。肺癌的癌症生存率仅为19%。有各种方法用于诊断肺癌,如X射线,CT扫描,PET-CT扫描,支气管镜检查和活组织检查。然而,为了了解基于组织型H和E染色的肺癌亚型,广泛使用,其中染色在从活组织检查中吸入的组织上进行。研究报道,组织学类型与肺癌预后和治疗相关。因此,早期和准确地检测肺癌组织学是一种迫切需要,并且由于其治疗取决于疾病的组织学,分子曲线和阶段的类型,最重要的是分析肺癌的组织病理学图像。因此,为了加快肺癌诊断的重要过程,减少病理学家的负担,使用深层学习技术。这些技术表明了在分析癌症组织病变幻灯片的分析中提高了疗效。几项研究报告说,卷积神经网络(CNN)在脑,皮肤,乳腺癌,肺癌等各种癌症类型的组织病理学图片的分类中的重要性。在本研究中,通过使用Reset50,VGG-19,Inception_Resnet_V2和DenSenet进行特征提取和三重态丢失来引导CNN以引导CNN,以引导CNN,以引导CNN使得其增加群集间距离并减少集群内距离。
translated by 谷歌翻译
以查询为中心的摘要(QFS)旨在产生应答感兴趣的特定问题的摘要,从而实现更大的用户控制和个性化。虽然最近发布的数据集如QMSUM或Aquamuse,促进QFS中的研究工作,但该领域缺乏对适用建模方法的广泛空间的全面研究。在本文中,考虑到两种普遍的方法,我们对QFS进行了系统探索,探讨了QFS:两阶段的采掘解决方案和端到端模型。在这些类别中,我们调查现有方法,并呈现了在QMSUM数据集上实现最先进的性能的两个模型扩展,其边缘高达3.38 Rouge-1,3.72 Rouge-2和3.28 Rouge-L。通过定量实验,我们突出了不同模型配置之间的权衡,并探讨了摘要任务之间的转移能力。代码和检查点公开可用:https://github.com/salesforce/query-focused-sum。
translated by 谷歌翻译